

Operational management of smart grids: the ROSE project and its application to Savona Campus

New Energy Management Systems (EMSs) for new grid configurations and actors are needed

PROJECT IDEA and POSSIBLE APPLICATION TO SAVONA CAMPUS

ROSE **OBJECTIVES**

ROSE project is the technical and economic viability of intelligent Smart & Micro Grid nodes, interconnected with Smart Aggregator for global optimization as an effective way to implement an open, active demand/response system integrated with the Grid.

The system is based on 3 elements:

- Micro-Grid/Smart-Grid
- Smart Aggregator
- DSO (Distribution System Operators) Integration

ROSE ARCHITECTURE

The overall architecture of the proposed system can be sketched as follows:

ROSE CONCEPT & APPROACH

ROSE project is based on the integration and development of advanced ICT tools that can provide the coordinated work of customers, aggregator and DSOs.

Innovative ICT technologies

Testing and development of simulation and optimization models within Energy Management Systems for monitoring, planning and management of energy systems

Improvement of economic and environmental sustainability

ROSE CONCEPT & APPROACH (2)

ROSE project optimize smart grids within three different levels:

- 1. Micro-Grid/Smart-Grid
 - Data from Microgrid Operational Management
 - Data from Demand/Response Productive building
 - Data from Planning and Forecast
- 2. Smart Aggregator
- 3. DSO (Distribution System Operators)
 - Decision requirements
 - Market information

ROSE FUNCTIONAL VIEW

ROSE **SMART AGGREGATOR** by

SMART AGGREGATOR is a data platform with a fully-configurable **Semantic Engine** to analyze, measure and evaluate **Big Data** in **Real Time**.

ROSE MAIN GOALS

- Day-ahead production scheduling of dispatchable and storage exploiting renewables forecast and optimization techniques
- Real time optimal control of production and storage systems

 Optimal thermal & electrical energy consumptions, minimizing the CO2 emissions, annual operating costs and primary energy use Possible case studies within a Campus

DSO requirements, Market information

Microgrid at the Campus scale

Buildings

Interconnected buildings

Savona Campus pilot site (testing for polygeneration microgrids and smart city demonstrators)

- 50,000 square meters
- courses from the Faculties of Engineering, Medicine, and Media Sciences
- laboratories, research centers and private companies (several operating in the environment &energy field)
- library, residences, canteen, café, etc...

The Smart Polygeneration Microgrid (SPM) Project

- Special project in the energy sector funded by the Italian Ministry of Education, University and Research (amount 2.4 M€)
- SPM is a 3-phase low voltage (400 V line-to-line) "intelligent" distribution system running inside Savona Campus and connecting:
 - 3 μCHP Gas Turbine (160 kwe and 280 kwth) fed by natural gas;
 - 1 PV field (80 kWp);
 - 3 CSP equipped with Stirling engines (3 kWe; 9 kWth);
 - 1 absorption chiller (H₂O/LiBr) with a storage tank;
 - 1 electrical storage: NaNiCl₂ batteries (100 kWh)
 - 2 PEV charging stations.
- Optical fiber ring IEC 61850

The Smart Polygeneration Microgrid (SPM) Project

The Smart Energy Building (SEB) Project

- Special project in the energy efficiency sector funded by the Italian Ministry for Environment (amount 3.0 M€)
- SEB is an environmentally sustainable building connected to the SPM, equipped by renewable power plants and characterized by energy efficiency measures:
 - Geothermal heat pump
 - PV plant on the roof (20 kWp)
 - Micro wind turbine (horizontal axis, 3 kW)
 - High performance thermal insulation materials for building applications
 - Ventilated facades

SPM & SEB inside the Savona Campus of the University of Genoa

- SEB is an "active load" of the SPM
- SEB is an energy "PROSUMER"

Enel (ITALIAN DSO)

and Unige joint

project: load

monitoring and

energy

management for

buildings

Savona

VERSO LE SMART CITIES: I sistemi implementati nel Campus di Savona vogliono essere l'anticipazione di quello che sarà il futuro della gestione intelligente della produzione e distribuzione di energia, con vantaggi ambientali ed economici per le città, gli stati ed i cittadini.

Thank you

Michela.robba@unige.it

marketing@mapsgroup.it

